Hier wird bewiesen, dass 1 = 2 ist.
Achtung:
wir gehen von zwei beliebigen Zahlen x und y aus.
1.) x = y
2.) mit x multilizieren: xy = x?
3.) y? subtraieren: xy - y? = x? - y?
4.) In Faktoren zerlegen: y(x - y) = (x + y)(x - y)
5.) Durch (x - y) teilen: y = x + y
6.) Da laut 1.) x = y, ersetzen wir: x = x + x bzw. x = 2x
7.) Durch x teilen: 1 = 2
Tja, wo steckt jetzt der Fehler?
Viel Spaß beim Suchen!
so long, gruß mcrack
Achtung:
wir gehen von zwei beliebigen Zahlen x und y aus.
1.) x = y
2.) mit x multilizieren: xy = x?
3.) y? subtraieren: xy - y? = x? - y?
4.) In Faktoren zerlegen: y(x - y) = (x + y)(x - y)
5.) Durch (x - y) teilen: y = x + y
6.) Da laut 1.) x = y, ersetzen wir: x = x + x bzw. x = 2x
7.) Durch x teilen: 1 = 2
Tja, wo steckt jetzt der Fehler?
Viel Spaß beim Suchen!

so long, gruß mcrack